Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
n this review article, a comprehensive meta-analysis based on available literature information has been undertaken to make a relative comparison of total arsenic in rice grain. This involves analyzing the findings of various peer-reviewed studies that examined arsenic-contaminated Asian regions. Also, this article highlights the regional-level human health risks caused by the consumption of arsenic-contaminated rice in the three regions of Asia. Deriving such information at the continental level is of major importance in view of the need for proper monitoring and alleviating serious and continually emerging human health issues in arsenic-contaminated areas. One aim of this paper is to highlight the potential of a viable modeling approach for appraising the danger posed by arsenic in soil-plant-human system. There is an urgent need to fix the safe limit of bioavailable arsenic in soil because total arsenic in soil is not a good index of the arsenic hazard. Our hypothesis is finding out whether the modeling approach can be used in establishing a safe limit of bioavailable arsenic in soils with reference to human health. To achieve the above-mentioned objectives, we have selected reported rice grain arsenic content data from Asian countries following the PRISMA guidelines. Carcinogenic and non-carcinogenic risk was calculated following the US EPA’s guidelines. It emerged that adults in Asian countries are prone to a high risk of cancer due to their consumption of arsenic-contaminated rice. South Asia (SA), South East Asia (SEA), and East Asia (EA) exceeded the US EPA-prescribed safe limit for cancer risk with ~ 100 times higher probability of cancer due to rice consumption. The hazard quotient for the ingestion of arsenic containing rice was 4.526 ± 5.118 for SA, 2.599 ± 0.801 for SEA, and 2.954 ± 2.088 for EA. These figures are all above the permissible limit of HQ of 1. The solubility free ion activity model can predict arsenic transfer from soil to rice grain based on easily measurable soil properties and be used to fix the safe limit of bioavailable arsenic in paddy soils. The methods and findings of this review are expected to be useful for regional-level policymaking and mobilizing resources to alleviate public health issues caused by arsenic.more » « less
-
null (Ed.)The remarkable mechanical properties and piezo-responses of carbon nanotubes (CNT) makes this group of nanomaterials an ideal candidate for use in smart cementitious materials to monitor forces and the corresponding structural health conditions of civil structures. However, the inconsistency in measurements is the major challenge of CNT-enabled smart cementitious materials to be widely applied for force detection. In this study, the modified tapioca starch co-polymer is introduced to surface treat the CNTs for a better dispersion of CNTs; thus, to reduce the inconsistency of force measurements of the CNTs modified smart cementitious materials. Cement mortar with bare (unmodified) CNTs (direct mixing method) and surfactant surface treated CNTs using sodium dodecyl benzenesulfonate (NaDDBS) were used as the control. The experimental results showed that when compared with samples made from bare CNTs, the samples made by modified tapioca starch co-polymer coated CNTs (CCNTs) showed higher dynamic load induced piezo-responses with significantly improved consistency and less hysteresis in the cementitious materials. When compared with the samples prepared with the surfactant method, the samples made by the developed CCNTs showed slightly increased force detection sensitivity with significantly improved consistency in piezo-response and only minor hysteresis, indicating enhanced dispersion effectiveness. The new CNT surface coating method can be scaled up easily to cater the potential industry needs for future wide application of smart cementitious materials.more » « less
An official website of the United States government
